Targetting Audits Using Predictive Analytics

Gareth Myles with Nigar Hashimzade, Frank Page, and Matt Rablen

Exeter and IFS

July 2013

Introduction

- The economic analysis of tax compliance has two objectives:
 - To explain and predict behaviour
 - To design beneficial interventions
- Different methodologies can contribute to this objective:
 - Theory
 - Empirical analysis
 - Experimentation
- This talk will focus on an additional methodology: agent-based modelling

Introduction

- The talk begins with an introduction to agent-based modelling
- Successful application of agent-based modelling requires a credible model of individual compliance
- So the literature on modelling compliance is reviewed
- The talk is completed by reviewing my work with Nigar Hashimzade,
 Frank Page, and Matt Rablen
 - Auditing rules
 - Predictive analytics

Agent-Based Modelling

- An agent-based model:
 - Creates a set of agents
 - Assigns abilities, objectives, and knowledge
 - Allows them to interact
 - Observes the outcome
- The creation and interaction takes place in a computer simulation
- Parameters can be varied to test the effect on the outcome
- Such models can describe natural situations or economic situations

Sheep and Wolves

- A famous agent-based model of nature is that of sheep and wolves
- Wolves and sheep wander randomly around the landscape
- The wolves look for sheep to prey on
 - Each step costs wolves energy so they must eat sheep
 - When they run out of energy they die
- Sheep eat grass and reproduce
- The analysis simulates the evolution of the populations

Allingham-Sandmo¹

- The same software can support a basic tax evasion model:
 - Apply the Allingham-Sandmo model of evasion choice
 - Adopt a random audit strategy
 - Track the degree of compliance
- Policy experiments permit the effect of interventions to be judged
- Provides a starting point for more detailed analysis

G Myles (Exeter and IFS) Targetting Audits July 2013 6 / 44

Limitations

- There are several limitations:
 - Most free software does not permit complex optimization
 - The implications of the preferences do not fit the facts
 - Interventions can be more sophisticated than random audits
- The first is solved through the use of alternative software (Matlab)
- The second motivates a review of the recent literature on compliance
- The analysis of sophisticated interventions is our current research question

Focussing on Choices

- Our research focuses on modelling the choice behaviour behind the compliance decision
- We aim to integrate the best of current theory to match evidence
- The intention is to permit the exploration of policy interventions
- The models can use artificial data or be calibrated to actual data
- The next sections develop the components of the model

Individual Compliance Behaviour

- Research on compliance behaviour has built on the basic model of Allingham-Sandmo (1972)
- The evasion level is chosen to maximize expected utility

$$\mathcal{E}\textit{U} = \textit{pU}(\textit{Y}\left[1-t\right] - \textit{tfE}) + \left[1-\textit{p}\right]\textit{U}(\textit{Y}\left[1-t\right] + \textit{tE})$$

- Where:
 - p is the probability of audit
 - Y is income
 - t is the tax rate
 - f is the fine levied on tax evaded
 - E is the amount of evasion

Limitations

- There are three basic problems with the predictions of this model
- First, E > 0 if $p < \frac{1}{1+F}$ which is satisfied for practical values (f is at most 2, so E > 0 if p < 1/3)
- ullet Second, decreasing absolute risk aversion is sufficient for $rac{dE}{dt} < 0$
- Third, the source of income also determines the opportunity for evasion:
 - Third-party reporting
 - Withholding
- Solutions proposed to improve the predictions include appeal to non-expected utility theory and to social customs

Non-Expected Utility

A general form of non-EU choice theory is

$$V = w_1(\textit{p}, 1-\textit{p}) v(\textit{Y}\left[1-t\right] - \textit{tfE}) + w_2(\textit{p}, 1-\textit{p}) v(\textit{Y}\left[1-t\right] + \textit{tE})$$

- Several alternatives have been proposed:
 - Rank Dependent Expected Utility imposes structure on the weighting functions
 - Prospect Theory uses weights, changes payoff functions, and comparison to a reference point
 - Non-Additive Probabilities do not require the normal consistency of aggregation for probabilities
 - Ambiguity permits uncertainty over the probability of outcomes
- The weighting functions (or *beliefs*) can improve predictions but still do not give $\frac{dE}{dt} > 0$
- And these alternatives have their own shortcomings (Hashimzade, Myles and Tran-Nam, 2012)

Prospect Theory

- Yaniv (1999), al Nowaihi and Dhami (2001), and Bernasconi and Zanardi (2004) use variants of prospect theory
- Consider the standard Kahneman-Tversky value function

$$v(z) = \left\{ egin{array}{ll} z^{eta}, & ext{if } z>0 \ -\gamma \left(-z^{eta}
ight), & \gamma>1, & ext{if } z<0 \end{array}
ight.$$

- ullet And choose the reference point as the correct tax payment, $Y\left[1-t
 ight]$
- The payoff function becomes

$$V=E^{eta}t^{eta}\left[w_{2}-w_{1}\gamma f^{eta}
ight]$$

 So evasion is all or nothing (a consequence of the non-concave objective)

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Social Customs

- A social custom is an informal rule of behaviour that summarizes the attitude toward compliance
- A loss of utility is incurred if the custom is broken

$$V = \begin{cases} U(Y[1-t]) + \chi^{i}, & \text{if } E = 0 \\ \mathcal{E}U, & \text{if } E > 0 \end{cases}$$

- There will be a cutoff χ^* such that $\chi^i < \chi^* \Longrightarrow E > 0$ and $\chi^i > \chi^* \Longrightarrow E = 0$
- If $\chi^i = \chi^i(m, E)$, (*m* the proportion of population evading) evasion becomes a social decision
- Myles and Naylor (1996) show that $\chi_m^i(m,E) < 0$ opens the possibility of multiple equilibria
- ullet For some specifications it is also possible for $rac{dE}{dt}>0$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Attitudes, Beliefs, and Opportunities

- From these observations:
 - We do not need to feel bound by expected utility using objective probability
 - Similarly, there is no need to be restricted by any of the particular alternatives
- In short, we happily mix subjective beliefs with convenient functional forms
- Our model of the compliance decision combines attitudes, beliefs, and opportunities and recognizes the social setting for the decision
- Three uses of agent-based models are now described:
 - The effect of opportunities are considered within the Allingham-Sandmo framework
 - Next the endogenous development of attitudes and beliefs within a social network is added
 - The final step is to review the effect of predictive analytics on audit outcomes

Opportunities

- The model allows each individual to make a choice of occupation (a generalization of Pestieau and Possen, 1991)
- Employment is safe (wage is fixed) but tax cannot be evaded (withholding, third-party reporting)
- Self-employment is risky but provides an opportunity to evade
- An individual is described by $\{w, \rho, s_1, s_2\}$:
 - w = wage in employment
 - $oldsymbol{
 ho}=$ (relative) risk aversion
 - $s_i = \text{skill}$ in self-employment occupation i

Occupational Choice

- The outcome of self-employment is $s_i y_i$ where y_i is drawn from a lognormal distribution
- It is assumed that $\mu\left(y_{1}\right)<\mu\left(y_{2}\right)$ and $\sigma^{2}\left(y_{1}\right)<\sigma^{2}\left(y_{2}\right)$
- The evasion level is chosen after income from self-employment is known
- With outcome $Y_i = s_i y_i$ the amount evaded E_i is determined by

$$\mathsf{max}\,\mathcal{E}\,\mathit{U}_{i} = \mathit{pU}([1-t]\,\mathit{Y}_{i} - \mathit{ftE}_{i}) + (1-\mathit{p})\,\mathit{U}([1-t]\,\mathit{Y}_{i} + \mathit{tE}_{i})$$

• The occupation offering highest (expected) utility is chosen

Simulation Process

- Individual characteristics $\{w, \rho, s_1, s_2\}$ are randomly drawn at the outset
- The simulation then iterates the following steps:
 - Occupation is chosen
 - Incomes are realized (as random draws in self-employment) and the evasion decision is made
 - The tax authority audits and punishes any evasion that is detected
- For each iteration the outcome with honesty and with evasion are calculated
- 1000 individuals in the simulation, 100 iterations and data averaged across iterations

Evasion and Risk-Taking

- The distribution of occupational choices shifts away from the safe occupation
- There is more occupational risk-taking when evasion is possible

Evasion and Income Distribution

 Evasion increases mean income (after taxes and fines) and the inequality of income

	Honesty	Evasion
Mean Income	27.72	32.77
Gini Coefficient	0.464	0.492

Proportion of population

Evasion and the Effective Tax Rate

- The flat tax of 0.25 is undermined by evasion and punishments
- The distribution of effective tax rates is unrelated to income

Effective tax rate

Attitudes and Beliefs

- The analysis of tax evasion has demonstrated two important features:
 - The social setting influences the evasion decision (attitudes)
 - The probability of audit is subjective not objective (beliefs)
- We have incorporated these into the simulation by adding learning within a social network
- Individuals meet with their contacts in the network and meetings allow exchange of information on beliefs
- This can explain why social groups have different behaviour with respect to tax evasion

Network and Meetings

- The network is described by a symmetric matrix A of 0s and 1s (bi-directional links)
- In each period a random selection of meetings occur described by a matrix C of zeros and ones
- ullet Individuals i and j meet during a period if $A_{ij} C_{ij} = 1$
- At a meeting of i and j there is a probability that information is exchanged
- ullet The probability of information exchange depends on the occupational groups to which i and j belong
- The probabilities are given by p_{ij} where i,j=e,1,2, and $p_{ii}>p_{ij}$, all $i,j,\ i\neq j$

Audits and Belief Updating

- The belief about the probability of audit is determined by audits and interaction
- ullet Occupational choice in period t is made on the basis of the belief p_t^i
- The updating effect of an audit is

$$\tilde{p}_t^i = X_t^i P + \left(1 - X_t^i\right) d\left(p_t^i\right), \ P \in [0, 1]$$

where $X_t^i=1$ if i was audited in t and $X_t^i=0$ otherwise

- Two different processes for the formation of subjective beliefs:
 - ullet Target effect: P=1 and $d\left(p_t^i
 ight)=\delta p_t^i,\ \delta\in[0,1]$ (rise, then decay)
 - Bomb-crater effect (Guala and Mittone, 2005): P=0 and $d\left(p_t^i\right)=p_t^i+\delta\left(1-p_t^i\right)$, $\delta\in[0,1]$ (fall, then rise)
- The evidence on which is correct is not compelling

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Information Exchange

- Individuals meet after audits take place
- If an information exchange occurs at a meeting the belief is updated according to the rule

$$p_{t+1}^{i} = \mu \tilde{p}_{t}^{i} + \left(1 - \mu\right) \left[X_{t}^{j} P + \left(1 - X_{t}^{j}\right) \tilde{p}_{t}^{j}\right]$$

This can also be written

$$p_{t+1}^{j} = \left\{ egin{array}{l} \mu ilde{p}_{t}^{i} + \left(1 - \mu
ight) P, & ext{if j audited at t} \\ \mu ilde{p}_{t}^{i} + \left(1 - \mu
ight) ilde{p}_{t}^{j}, & ext{otherwise} \end{array}
ight.$$

ullet The belief p_{t+1}^i is carried into the next period

Attitudes

- The importance of the social custom is determined by interaction in the social network
- \bullet Each individual is randomly assigned a level of importance, $\chi_0^i,$ at time 0
- This value is then updated each period if there is an information exchange between two individuals
- The updating process is described by

$$\chi_{t+1}^{i} = \frac{1}{X(i)+1} \left[\chi_{t}^{i} X(i) + \mathbf{1}_{\left[E_{t}^{j}=0\right]} \right]$$

where X(i) is the number of previous meetings for i at which information was exchanged

• $\chi^i_{t+1} > \chi^i_t$ if information is exchanged with an honest taxpayer and $\chi^i_{t+1} < \chi^i_t$ if information is exchanged with an evader

Risk Aversion

Subjective Beliefs

Audit probability = 0.05

Compliance

- The model is sufficiently rich to permit a range of questions to be investigated
- We have considered
 - The optimal number of random audits
 - Alternative audit strategies
 - The choice between audit types (hard or soft)
- The focus here will be on alternative audit strategies

- Four audit strategies are analyzed:
 - FixedPA: Random audit of the self-employed with a fixed probability
 - FixedNA: Audit a fixed number of taxpayers in each occupation
 - FixedNAA: Switches audits between occupations each period
 - FixedNAR: Randomly switches audits between occupations
- The fixed numbers match the expected number from the random audit

Tax and Fine Revenues

Empirical CDFs

Dual Probabilities

- An extension to the model is to allow each taxpayer to have separate beliefs about the audit probability in the two occupations
- ullet Beliefs are now the pair $\left\{p_t^i\left(1
 ight),p_t^i\left(2
 ight)
 ight\}$
- If the taxpayer works in occupation j then $p_t^i(j)$ adjusts as before
- In contrast $p_t^i(j')$ only adjusts if information is exchanged with someone working in occupation j'

Dual Probabilities

Empirical CDFs

July 2013

- The role of predictive analytics is to identify the best audit targets
- Predictive analytics are used by the IRS, HMRC etc.
- Various methods are used including credit scoring and econometric analysis
- We want to explore the effects of predictive analytics and whether they can improve on the other audit strategies
- The analysis compares the outcome of predictive analytics based on tax return data with that of random audits

- The simulation uses random audits for the first 50 periods
- The data from audits is collected and used to run a Tobit (censored) regression
- The amount of non-compliance is regressed on occupation, declaration, and audit history
- The estimated equation is used to predict non-compliance
- For periods 51-80 the top 5 percent are audited and audit outcomes used to update regression
- For periods 81-110 the top 2.5 percent are audited and 2.5 percent are randomly audited

- The results show clearly that the use of predictive analytics increase tax and fine revenue
- Underlying this is an increase in the honesty weight when the predictive analytics operate
- Compliance is not uniformly increased in occupational groups if there is some randomness
- Extending to the dual probabilities does not affect the conclusion

Predictive Analytics with Dual Probabilities

Tax Revenues

Conclusions

- Agent-based modelling is a useful tool for testing policies
- The modelling can incorporate recent advances in the theory of compliance
- Our work emphasizes the role of attitudes, beliefs, and opportunities
- Compliance behaviour can vary significantly across occupational groups
- Predictive analytics is successful in encouraging compliance and increasing revenue