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Abstract: Anomaly detection in network science is the method to determine aberrant
edges, nodes, subgraphs or other network events. Heterogeneous networks typically con-
tain information going beyond the observed network itself. Value Added Tax (VAT, a tax
on goods and services) networks, defined from pairwise interactions of VAT registered
taxpayers, are analysed at a population–scale requiring scalable algorithms. By adopt-
ing a quantitative understanding of the nature of VAT–anomalies, we define a method
that identifies them utilising information from micro–scale, meso–scale and global–scale
patterns that can be interpreted, and efficiently implemented, as population–scale net-
work analysis. The proposed method is automatable, and implementable in real time,
enabling revenue authorities to prevent large losses of tax revenues through performing
early identification of fraud within the VAT system.
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Significance Statement: The Value Added Tax (VAT) suffers from fraud problems
arising through fictitious network transactions. We develop a scalable and automatable
anomaly detection method that combines the VAT network structure with machine learn-
ing and applies it to VAT data from the Bulgarian National Revenue Agency (BNRA).
BNRA applies risk-based rules on over 300,000 taxpayers to identify VAT fraud. The
prioritisation process initially selects 15,000 which is narrowed down, with additional
sample refinement, to 500 and, through auditing, approximately 100 taxpayers are con-
sidered as likely members of VAT fraud. The proposed method identifies, through a one
stage process, 100 VAT fraudsters by considering only 200 taxpayers for auditing. The
method generates savings on scarce resources and improves tax compliance and revenue
yield.
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1 Introduction

Value Added Tax (VAT) is a major source of revenue for, remarkably,1 over 160 countries.

VAT is a consumption tax in the sense that the VAT collected through the supply chain

is the VAT paid by the consumers in the place where the good is consumed. Underlying

VAT therefore there is an “invoice-credit” mechanism where the net tax liability of a

business2 is calculated by subtracting from the sales the aggregate value of VAT paid

on invoices for the inputs used in production. The “invoice–credit” mechanism requires

sellers along the production chain to provide invoices to their buyers showing the amount

of VAT that was paid on a given transaction. The fractional revenue collection on the

value added that is generated at every stage of the production chain is remitted to

the appropriate revenue authority. The business-to-business (B2B) transactions and the

VAT “invoice–credit” mechanism de-facto create a network through which businesses are

interacting within and across economic sectors.

Despite its remarkable rise as a tax innovation, it is universally recognised that the

current VAT system has both weaknesses and vulnerabilities (Keen and Smith, 2006)

making it not fit for purpose in a modern technology-based economy (Ebrill et al., 2001).

Like any tax, VAT is vulnerable to fraud, but the “invoice–credit” mechanism offers

unique opportunities for abuse, an issue that has become a major concern in the Eu-

ropean Union and its Member States (Keen and Smith, 2006). Missing Trader Intra-

Community (MTIC) fraud (famously also known as carousel fraud) is the most challeng-

ing type of VAT fraud and is a consequence of zero-rating under VAT: The fraudsters,

exploiting the fact that exports are zero-rated, claim a refund of VAT paid on purchases

even though output VAT has not yet been collected in the country the goods have been

exported to. This structural element of VAT has been eloquently described as VAT’s

Achilles heel (Keen and Smith, 2006).3 VAT fraud is not unique to cross-border B2B

transactions but arises within the domestic VAT network too. The analysis and the

method developed in this paper captures all elements of VAT network fraud.

Fraud in the VAT system corresponds to anomalous behaviour in the web of inter-

actions between traders within the network of traders. This, in parts, is associated with

the anomalous behaviour of individual traders (or nodes) in the network of interactions.

However, as VAT fraud requires the interaction of multiple B2B traders, it corresponds

to a communal behaviour of interactions in a group of nodes. To isolate potential fraud-

ulent behaviour requires modeling of both individual behaviour of nodes and communal

1For the remarkable rise of VAT, and what has shaped its adoption, see, for example, Keen and
Lockwood (2010).

2Throughout trader and business are used interchangeably. A requirement for a trader/business to
claim VAT is that they are registered for VAT with the revenue authority.

3MTIC fraud is not unique to the European Union but it is also of relevance to countries where fiscal
checks at the physical borders have been relaxed following trade agreements.
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behaviour of groups using network science. This also requires the satisfaction of the

constraint that if the method is to be applied to a significant portion of data then the

method must be both robust and computationally efficient.

VAT fraud presents a significant threat to society’s welfare as it erodes tax revenues

but also impedes the “level playing field” putting legitimate businesses into a disadvan-

taged position. Identifying and combating VAT fraud before it occurs is therefore impor-

tant, particularly so when it involves missing traders: Once the fraud materialises and

any VAT claim to the revenue authority has been refunded, tracking down the fraudsters

and recovering the lost revenues is, in most cases, an impossibility. Given the high vol-

ume of transactions across sectors and between businesses, risk–based profiling of VAT

claims is required coupled with early, timely, and preferably automatic, fraud-detection.

The objective of this paper is to develop an anomaly detection and automatable

method suitable for dealing with a population–scale and heterogeneous network such as

the one constructed from VAT transactions. The possibility of automating the detection

of VAT–fraud is part of a larger current international research theme seeking to use large

scale data sets to improve tax (and social) policy (Lazer et al., 2009; Athey, 2017; Lazer

et al., 2020) and our understanding of human interactions (Jackson and Wolinsky, 1996;

Margetts and Dorobantu, 2019).
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Figure 1: The directed weighted network of sector specific VAT transactions that were

conducted from January 2016 to December 2017 within Bulgaria. Each node corresponds

to an economic sector whereas the width of the directed edges represent the amount of

VAT exchanged in the direction of the edge. The correspondence between the economic

sectors and the capital letters used as node labels can be found in the supplementary

material.
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Network anomaly detection algorithms have already seen significant development

during the last decade, see for example Akoglu et al. (2015); Baltoiu et al. (2019);

Fernandes et al. (2019). For additional contributions, particularly in fraud detection

in other settings, see Irofti et al. (2019); Elliott et al. (2019) who focus on breaking a

network into communities to search for fraud within communities, deep learning based

approaches, as well as a combination of spectral methods with motif based statistics to

detect anomalous nodes.

VAT fraud, and MTIC fraud in particular, is achieved by exploiting the many-

stages of invoice-transactions within B2B transactions involved in the export, import,

and re-export of goods. Under MTIC fraud, fraudulent businesses import goods from

overseas, VAT-free, before selling them on to domestic buyers, charging them VAT.

This process often continues, with the goods being re-exported and re-imported for the

fraud to continue. What this means, in practice, is that the fraud leaves a pattern of

transactions between businesses which, naturally, takes the form of a weighted network.

A typical network on which VAT applies is illustrated in Figure 1, which depicts VAT

transactions across economic sectors in Bulgaria in 2016/2017.

When studying interactions we supplement the recordings of the interactions that

are weighted and directed. We also have information on node–specific (estimated) vec-

tor with fraud probabilities based on node–specific covariates. VAT–fraud inevitably is

a community activity. We therefore seek to determine communities whose members are

likely to be suspected of VAT–fraud. Normally communities in networks are determined

from the graph Laplacian, calculated from the (weighted) adjacency matrix. We now

seek to combine our understanding of the node-specific structure of coherent interaction

behaviour. This leads us to determine a corrected version of the Laplacian for determin-

ing anomalous communities, thus, recognizing the anatomy of fraud as a combination of

individual propensity with community opportunity.

We update a vertex–specific binary vector using the singular value decomposition of

the regularized graph Laplacian via estimated anomaly probabilities. This encapsulates

both using information across nodes, as well as node-specific information, resulting in a

probability that node i is involved in fraudulent activities. We show how to implement

this method on a population–sized data set involving over 300, 000 entities, based on all

VAT–registered businesses in Bulgaria. By implementing a design of a population–scale

anomaly detection scheme, our work naturally fits into the program of population–scale

inference in computational social science.
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2 Data: VAT Administrative Network Data

To put our network anomaly detection algorithm into context, let us describe the char-

acteristics of the data we analyze in this paper. VAT fraud, and particularly MTIC,

is predominantly conducted through fictitious transactions and trading with the sole

purpose of a cash outflow from the revenue authority of a country. The trader/taxable

business at some point vanishes from the market without paying the due tax to the

government. The objective of VAT fraudsters is, therefore, to conceal the fraud and

go undetected using sophisticated transactions often involving many businesses across

many sectors and countries, thus confounding any fraud detection attempts. MTIC

fraud schemes involve organized criminals, missing or defaulting traders, buffer traders,

broker traders, contra-traders end-customers (for acquisition fraud), freight forwarders

and warehousing traders.

As a motivating data set, we deal with all VAT fraud within Bulgaria. Bulgaria

is an early adopter of the VAT system, having introduced it in 1994, and became a

member of the EU in 2007. As of 2017 the VAT Gap in Bulgaria (the difference between

the tax revenue which should be collected and what is collected) was 12.2% just over

the 11.5% EU average, so VAT fraud (a proportion of the VAT Gap) is considered

sizeable (The European Commission, 2020). Developing, therefore, an early automatable

identification system that identifies trades involved in the VAT fraud scheme is very

valuable not only for the Bulgarian National Revenue Agency (BNRA) but also for all

other revenue authorities facing the same problem. An important complementary feature

is the identification of clusters consisted of taxpayers with similar characteristics. The

cluster membership of each taxpayer can be also utilized by revenue authorities to deal

efficiently with the complicated structure of large VAT networks and identify connections

between VAT fraudsters.

We apply the developed algorithm on ledgers data for all N = 312, 762 VAT regis-

tered taxpayers in Bulgaria in 2017. We conducted an out-of-sample exercise in which

we trained the proposed model by constructing graphs that correspond to the monthly

VAT returns filed by the taxpayers from January 2016 up to November 2017 and we

aim to predict, probabilistically, the illegitimate taxpayers of December 2017. We com-

pare our results with classification techniques that rely only on covariates that describe

taxpayers’ profiles without taking into account the network structure of the data. This

out-of-sample exercise demonstrates that the graph information plays a key role in the

efficient detection of anomalous vertices.

The constructed graphs are based on the aggregation of the VAT base from all

transactions between each pair of VAT registered taxpayers. On average, 75% of the

N VAT registered taxpayers conduct at least one transaction in a given month. Table

4



1 reports the composition of VAT base according to records required traders/taxable

persons to declare under the Bulgarian VAT law as indicated in the first column of the

table.4 Tables 1 and 2 provide the summary statistics of the categories of transactions

over the 24-month period. VAT fraud is potentially embedded within all aspects of

VAT transactions described in Tables 1 and 2. As can be seen from the tables these

transactions (in values and numbers) constitute a significant proportion of the total.

In addition to the aggregated VAT base of the invoices, the analysis utilizes a set

of features that describe the profile of each VAT registered trader. These include, the

size of the VAT registered company, the age of the company, labour costs as well as

the classification of the transactions conducted by the registered traders. Importantly,

each registered taxpayer has been classified as “high–risk” or “low–risk” by BNRA by

utilizing past information of fraudulent activity as well as operational knowledge, this

corresponding to Y (testing and training data) and Y̆ (the training data alone). It is

worth noting that the average proportion of “high–risk” traders/taxable persons during

the time period is 1% per month. The value of goods/services and the corresponding

VAT base that each trader has transacted with “high–risk” traders is also available and

classified according to the categories displayed in Tables 1 and 2.

Table 1: The total VAT base reported on sells invoices and imports for the years 2016
and 2017 across the categories of VAT transactions. All values are expressed in local
currency.

2016 2017

Sum of VAT base (sells & imports) 305,386,748,486 334,040,088,090
ICA (%) 10.8 10.7
ICD (%) 9.3 9.4
9% (%) 0.7 0.6

Services from EU (%) 6.6 6.3
Deliveries from outside Bulgaria (%) 2.1 2.4

Exports to third countries (%) 6.9 7.3
Imports from third countries (%) 5.3 6.2

0% special deliveries (%) 0.1 0.1
TA (%) 0.6 0.7
TD (%) 0.8 0.8

3 Methods: Anomaly Detection

The main challenge in detecting network anomalies is the classification of the network

features into “normal” and “anomalous”. In a network there is more than one type of

4The following abbreviations have been used: Inter-community Acquisitions (ICA), Inter-community
Deliveries (ICD), Triangural Acquisitions (TA), Triangular Deliveries (TD).
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Table 2: Total number of transactions for the years 2016 and 2017 across the categories
of VAT transactions. All values are expressed in local currency.

Median Minimum Maximum

ICA 390,843 147,787 528,678
ICD 217,397 85,782 305,091
9% 193,019 91,969 251,009

Services from EU 212,614 64,362 284,953
Deliveries from out of Bulgarian territory 84,360 18,529 168,261

Exports to third countries 280,437 96,196 413,784
Imports from third countries 49,237 14,797 65,271

0% special deliveries 8,148 2,801 14,733
TA 12,480 2,619 16,244
TD 13,023 1,689 18,067

anomaly. If, additionally, one considers the constraint of a method then we must also

take computational scalability into consideration.

A review of the issues in network anomaly detection appears in Akoglu et al. (2015)

and Fernandes et al. (2019). Given the nature of MTIC fraud anomalous activities

are characterised both by nodal covariates, and by groups of nodes having a particular

pattern of association. The approach taken in the present paper merges these two points-

of-view (groups and nodal perspectives).

We start from the adjacency matrix A(G) constructed from the (weighted) edges

E(G) of interactions between nodes (taxpayers) V (G) with weights {wij}. The adjacency

matrix thus takes the form of

aij(G) =

{
wij if (i, j) ∈ E(G) i, j ∈ {1, . . . N}
0 otherwise

.

If the wij are not symmetric then we define Ã = A + AT otherwise we take Ã = A.

Figure 1 shows the sector–specific network of tax interactions from 2016 and 2017.

The proposed method employs the network A, coupled with node-specific covariates

X, to estimate probabilities of suspected fraud p̃. The approach begins by estimating

probabilities of fraud for each individual node i without using the network structure

and then proceeds with understanding of how our knowledge of the group structure of

G enriches our initial estimates providing more accurate predictive probabilities of a

fraudulent node.
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3.1 Initial Detection of Anomalous Nodes

Our data set contains weighted interactions as well as other variables (covariates) indexed

by the nodal number i = 1, . . . , N , as we assume that there are N ∈ N nodes in the

network. We collect the node-specific covariates in the N × p matrix X where p is the

number of available covariates. To classify the nodes without initially using their network

community structure we shall use the X to implement binary classification using the

scalable XGBoost method (Chen and Guestrin, 2016); see the supplementary material

for a brief description of the XGboost method while gradient boosting is further detailed

in James et al. (2013). To be able to implement this method, we assume availability of

training data Y̆, X̆ with previously identified cases of fraud, versus cases of not detected

fraud, with associated covariates. Thus, after training the XGboost algorithm, we obtain

an output p̂(X) ≡ p̂. This has not taken the network structure of fraudulent activities

into account, but depends on the nodal characteristics via X.

3.2 Incorporating Graph Characteristics of VAT Fraud

VAT fraud is predominantly a community or group activity and cannot normally be

implemented simply by a single actor. To be able to model the group structure of

activities, we need to detect those groups or communities that are more probable to

be involved in fraudulent behaviour. This can be done by fitting a group model that

identifies the nodes present in any group. This fit can either be implemented under the

assumption that there are true blocks in the data (Newman, 2012) or just a propensity

of a range of nodes to behave like a grouping (Olhede and Wolfe, 2014).

The most common method to extract community structure from a network is spec-

tral clustering (Chung and Graham, 1997) which is based on a spectral partition from

the graph Laplacian matrix with D = diag{d1, . . . , dN} as a diagonal matrix and so

L(α, τ) = D−1/2
τ ÃD−1/2

τ + αp̂p̂T , Dτ = D + τI. (1)

Note that Ã is symmetric. There are a number of possible “Laplacians” that we might

have defined, both in terms of the Laplacian, the graph Laplacian (Chung and Graham,

1997), and various regularized Laplacians (Chaudhuri et al., 2012; Qin and Rohe, 2013;

Binkiewicz et al., 2017). There has also been some debate about using Laplacian spectral

clustering or adjacency spectral clustering (Priebe et al., 2019). The blockmodel for

weighted adjacency matrices has been discussed in detail in Peixoto (2018). We choose

to adopt adjacency spectral clustering, combined with a choice of regularization that

depends on the two tuning parameters τ and α.

We can see directly from (1) that if the adjacency matrix is zero and there were
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no network structure in the data then we would only cluster on the values of the vector

p̂. If, on the other hand, τ was chosen to be zero, then there would be no regularization

when inverting the degree matrix. As a final step we wish to update p̂ to p̃ using the

graph structure and then to select a threshold to determine which p̃ are large enough

to warrant further investigation. This is achieved again via XGboost and by utilizing

the loadings of the eigenvectors of L(α, τ); see in the supplementary material for more

details.

4 Population–Scale MTIC Fraud Detection

4.1 VAT Fraud Detection Example

The aim of VAT fraud detection is to determine which taxpayers are suspected as being

potential actors in a fraud scheme. We therefore apply the proposed algorithm, Graph

Informed Multiscale Anomaly Detector (GIMAD)5, to the data presented in Section 2

corresponding to VAT returns from the years 2016-2017 for 312, 762 taxpayers. Taxpayers

submit monthly VAT returns, implying that we have 24 temporal snapshots which we

will train on 23 months of transactions and then validate on 1 month of transactions.

An edge in the network implies that there is at least one tax transaction between the

two taxpayers.

Prediction of probabilities of risky taxpayers is achieved by first training the XG-

boost algorithm with inputs a binary response vector Y̆ and the N×p matrix X̆ consisted

of the available covariates which are: the sector in which each taxpayer (company) is

registered, the number of the employees, the size and the labour costs of each company

and other records that taxpayers declare with their VAT returns. In particular, for each

taxpayer and for each category in the first column of Table 1 we compute the number

of transactions that they have conducted along with the corresponding VAT base and

the proportion of these transactions conducted with “high–risk” taxpayers as indicated

by the input vector Y̆. We note that these type of covariates are a subset of the risk-

based criteria which the Bulgarian authorities employ in order to prioritize the taxpayers

with respect to their riskiness of being involved in an MTIC fraud. We also construct

covariates by utilizing the characteristics of the 23 observed graphs. We calculate for

each vertex its mean (across the observed graphs) degree, strength and centrality. The

resulting matrix has p = 49 columns. Then, we utilize the N × p matrix X consisted of

the covariates that correspond to the month (December 2017) that we wish to predict

risky probabilities in order to obtain the vector p̂ appearing in (1).

5See in the supplementary material for the algorithmic description of the steps of the proposed
GIMAD.
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The input adjacency matrix A corresponds to the adjacency matrix of a directed

weighted graph, constructed by the VAT returns submitted in December 2017. In our

case A is an asymmetric matrix so we construct a symmetric matrix Ã = A + AT . The

undirected graph whose adjacency matrix is Ã has the same edges as the original graph,

but directed edges have been replaced with undirected edges with a sum of the weights

associated with the edge in question. Community detection methods that are based

on Ã tend to group nodes that share similar incoming and outgoing edges (Satuluri

and Parthasarathy, 2011). We find this symmetrization reasonable as VAT-registered

traders that perform fraudulent activity, it is reasonable to assume, have common trading

patterns. Finally, we do need to determine tuning parameters with this method, e.g. both

α and τ . We follow the advice of Qin and Rohe (2013) and set τ̂ = N−1
∑n

i=1 dii = d̄, the

average degree. The value of α can be determined from the eigenvectors of D
−1/2
τ ÃD

−1/2
τ

and p̂. See for example in Binkiewicz et al. (2017) where the authors show how to set α

such that the information contained in D
−1/2
τ ÃD

−1/2
τ as well as in p̂ is captured in the

leading eigenspace of L(α, τ̂).

4.2 Out–of–Sample Detection

To test the performance of our anomaly detection algorithm we have designed an out–

of–sample detection exercise. We construct a time series of graphs from the 24 months

of observations corresponding to the monthly data of 2016 and 2017.

Our first step in classifying the 24th month of observations from the other 23

corresponds to a binary vector that indicates the anomalous vertices of “high–risk”

taxpayers, a matrix of covariates and an adjacency matrix. The binary vector Y̆ that

we input is a classification of “high–risk” and “low–risk” taxpayers, as calculated by

BNRA up to the point November 2017. We note that this is an unbalanced classification

problem as the proportion of fraudulent node is unlikely to be as large as one half (Hand

and Vinciotti, 2003). This corresponds to assigning a different loss to the different types

of miss-classification. To deal with this class imbalance problem we apply the method of

random oversampling by randomly re-sampling the set of “high–risk” taxpayers in order

to construct a balanced dataset. We have chosen the technique of oversampling among

others in order to keep the proposed method simple without loosing any information

carried on the original data; see, for example, Menon et al. (2013) for a comparison of the

several techniques that have been developed to deal with data imbalance problems. To

carry out the out–of–sample analysis we use the weighted directed graph made from the

VAT returns submitted in December 2017. The value of the tuning parameter α should

be chosen to balance the network structure, as captured by Ã, versus the individual

probabilities of p̂. We implemented sensitivity analysis to determine a value of 0.01 for

9
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Figure 2: ROC curves that compare the out-of-sample classification performance of the
proposed method (black line) with the out-of-sample classification conducted without
utilising the network information (gray line). Top: The comparison corresponds to the
detection of all the “high-risk” taxpayers of December 2017. Bottom: The comparison
corresponds to the detection of taxpayers that entered the risk registration list of BNRA
at December 2017.

this parameter. To calculate the spectral decomposition of the matrix L(0.01, τ̂) in (1)

we employed the Lanczos bidiagonalization method (Baglama and Reichel, 2005) and we

stopped the algorithm after computing the first K = 200 eigenvalues and eigenvectors

by noting that after that value the eigenvalues were quite similar; see Figure 1 in the

supplementary material for their values. In the supplementary material we also present

Algorithm 1 which summarizes the steps of the proposed method. The application of

Algorithm 1 on the described dataset required almost 3 hours, on a Laptop with a 1.6

GHz Dual-Core Intel Core i5 CPU running R 4.0.0 R Core Team (2021).

4.3 Determining the Accuracy of the Proposed Method

We evaluate the proposed technique by trying to predict the provided list of risky tax-

payers, as occurring in December 2017. We can observe directly from the list of risky

taxpayers that 64% of the high–risk registrations of taxpayers in December 2017 had in

fact been determined as “high–risk” already in November 2017. The remaining 36% were

registered for the first time as “high–risk” in December 2017. We, therefore, address the
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two tasks of i) predict all risky registrations in 2017, and ii) predict only the new risky

registrations in 2017.

To determine the performance of our novel methodology we compare the receiver

operating characteristic (ROC) curves (Hsieh et al., 1996) produced by our method and

by using XGboost classification without the network information. Figure 2 illustrates

that our algorithm outperforms the simple XGboost algorithm in both the old and new

taxpayers in December 2017. This provides strong evidence of the added utility to

combine both individual and group patterns to detect fraud.

4.4 Policy Evaluation of the Algorithmic Output

The policy gain of the automated detection algorithm proposed in this paper is clear;6

currently BNRA applies risk–based rules on all the submitted tax returns and monthly

prioritizes 15,000 of these returns as “high–risk”. By implementing further selection cri-

teria those 15,000 are whittled down to 500, and finally via auditing 100 taxpayers are

identified as having been part of VAT fraud. The method proposed in this contribution

provides a fully automated mechanism for identifying VAT fraudsters. Automation has

a number of clearly identified advantages, reducing cost, increasing transparency and re-

producibility, explicitly balancing the information obtained from a single taxpayer versus

that provided by the population–scale data. The out-of-sample exercise shows a clear

benefit in identification for a fixed false positive rate. In particular, our contribution to

policy is identified as having determined 200 taxpayers with the highest fraud probabil-

ities, where 100 of them entered the risky list for the first time in December 2017. By

automation we have reduced the set of 500 identified by the BNRA selection procedure

that relied on a human–implemented selection procedure.

Finally, Figure 3 displays the number of new entries in the risky list that we can

identify for a given number of taxpayers reported as suspicious. The figure indicates that

reducing 200 to 50 reported taxpayers we minimize out false positive rate since 40 of

them entered the risky list of BNRA at December 2017 indeed. Allowing for more false

positives7 and increasing 200 to 500 which is the number currently audited by BNRA

we can predict more than 120 “high–risk” taxpayers while we can find more than 140 by

reporting 2, 000 taxpayers to be audited.

6Though the method is applied on data from BNRA its application is, of course, broader and can be
employed by other revenue authorities as well.

7As false positives we denote taxpayers that have not been audited by BNRA with respect to par-
ticipation in VAT fraud scheme.
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Figure 3: The X-axis indicates the number of taxpayers that we need to report in order
to identify the number of taxpayers that have entered the risk–list of BNRA for a first
time in December 2017 (Y-axis).

5 Discussion

When determining anomalous events the basic question we must answer is: Are we

willing to define what is “normal” or what is “abnormal”? Yet, a problem is always

that we observe more normal data than abnormal, and that abnormal features are quite

rare (Donoho and Jin, 2008). In very large data sets, such as the VAT system we

analyzed, and consisted of 312, 762 taxpayers, we would still like to borrow information

across taxpayers to reduce variability in characterising individual taxpayers and help

our decision-making. We are therefore going from studying the large-scale set of normal

individuals to the micro–scale set of abnormal individuals. The idea in this paper has

been to combine our understanding of the micro–scale of individuals with the meso–

scale of local segments of the population engaged in suspicious activities in order to

reduce variability in the delivered predictions. Of course detecting anomalies is just an

admissible strategy in response to a particular choice of regulatory policy (Black and

Baldwin, 2012); over time policy may change necessitating a change in the algorithm.

Is then the notion that individual variability should be updated with medium–scale

structure present in the data unique to VAT and tax fraud? Other authors studying

fraud in money–laundering have identified the importance of community, if combined

with dictionary learning (Baltoiu et al., 2019). Additionally, in bioinformatics, in par-

ticular metabolomics, interactions measures are used to mediate individual loci excep-

tionality (Shin et al., 2014). The notion of a group model combines naturally with

distributional local permutation invariance (Kallenberg, 2006), allowing us to locally

average, but still combining group structure with individual exceptionality by the prob-
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ability estimate that is moderated by the group structure. This can be considered for

networks as a generalization of the degree–corrected stochastic blockmodel, except here,

instead of moderating by a proclivity to connect of the network, we moderate by the ex-

ceptionality of the individual taxpayer. This allows us to characterise how our individual

perception of exceptionality is not just a combination of “normal” (population–scale),

“abnormal” (micro–scale), and segments of the population that exhibit similar charac-

teristics (meso–scale). Our understanding of populations will inevitably be patchy; but

needs to be glued together from our understanding of variability at different scales.
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1 Introduction

This document supplements the material presented in the manuscript “Detecting anoma-

lies in heterogeneous population–scale VAT networks”. Section 2 presents the codes of

the economic sectors displayed by Figure 1 of the main paper. Section 3 provides a brief

description of the XGboost algoritm by Chen and Guestrin (2016) and explains how it

is employed in the proposed anomaly detection method. Section 4 presents Algorithm

1 which summarizes the steps of the developed anomaly detection technique. Finally,

Section 5 shows additional results from the eigendecomposition of the covariate assisted

graph Laplacian defined by equation (1) in the main paper.

2 Table with Economic Sector Codes

Table 1 displays the codes of the economic sectors in Bulgaria classified according to the

Nomenclature of Economic Activities (NACE) system.
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Table 1: Sector codes according to the Nomenclature of Economic Activities (NACE)

classification system.

Code Sector

A Agriculture, forestry and fishing

B Mining and quarrying

C Manufacturing

D Electricity, gas, steam and air conditioning supply

E Water supply; sewerage; waste management and remediation activities

F Construction

G Wholesale and retail trade; repair of motor vehicles and motorcycles

H Transporting and storage

I Accommodation and food service activities

J Information and communication

K Financial and insurance activities

L Real estate activities

M Professional, scientific and technical activities

N Administrative and support service activities

O Public administration and defence; compulsory social security

P Education

Q Human health and social work activities

R Arts, entertainment and recreation

S Other services activities

NA Not available information of the economic activity

3 Brief Description of the XGboost Algorithm

For a dataset in which Y is an N -dimensional vector with responses and X is an N × p
matrix with features (covariates) XGboost has originally described by Chen and Guestrin

(2016) as an ensemble of S regression trees where a prediction ŷi is obtained as

ŷi =
S∑

s=1

fs(Xi), fs ∈ F , (1)

where F is the space of the regression trees and each function fs corresponds to an

independent tree structure with T number of leaves and leaf scores V ∈ RT . We learn
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the functions fs by minimizing the regularized objective

L =
N∑
i=1

`(ŷi, yi) +
S∑

s=1

Ω(fk), (2)

where ` is a differentiable convex loss function which measures the difference between

the predicted and the target label and

Ω(f) = Tγ + (1/2)λ
T∑

j=1

v2j ,

is a regularization term which penalizes the complexity of the model to avoid over-

fitting, T is the number of leaves and vj the score on the jth leaf while γ and λ are

constants to control the degree of regularization. Since the parameters of the model in

(2) are the functions fs traditional optimization methods of the Euclidean space cannot

be used. Instead the model is trained in an additive manner by first noting that the

additive structure of the prediction in (1) implies that ŷ
(t)
i = ŷ

(t−1)
i + ft(Xi), where the

superscript t denotes the tth iteration of the optimization procedure. Then, objective in

(2) becomes

L(t) =
N∑
i=1

`
(
yi, ŷ

(t−1)
i + ft(Xi)

)
+ Ω(ft). (3)

After a second order Taylor approximation and by removing all the constant terms we

have that

L̃(t) =
N∑
i=1

[gift(Xi) +
1

2
hif

2
t (Xi)] + Ω(ft), (4)

where gi = ∂ŷ(t−1)`(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1)`(yi, ŷ
(t−1)) are first and second order gra-

dient of the loss function. By expanding the regularization term Ω and noting the

quadratic form of equation (4) it is easy to find the optimal weights V . Therefore, for

a given tree structure we can compute the optimal leaf weights V and to calculate the

corresponding value of (3). Since it is impossible to make these calculations for all the

possible tree structures, Chen and Guestrin (2016) show that for the loss function in (3)

it is straightforward to calculate a score for a leaf node during splitting and based on

this score they propose to utilize the so-called exact greedy algorithm in order to detect

the split point that results in maximum loss reduction. Therefore, XGboost becomes a

scalable method which is more than ten times faster than other popular algorithms in a

wide range of problems (Chen and Guestrin, 2016).

In the anomaly detection method that we build we utilize the XGboost algorithm

twice in order to estimate node-specific anomalous probabilities. We have denoted the

training binary responses, which we give as input to XGboost, with Y̆. As described in
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Section 4.A of the main paper in order to perform an initial estimation of anomalous,

node-specific, probabilities we train the XGboost algorithm by using the covariates in

X̆ and then we use the covariates in X to obtain the vector p̂ appearing in the matrix

L(α, τ) defined by equation (1) of the main paper. In the final step of our method we use

as covariates the loadings of the eigenvectors of the matrix L(α, τ) in order to update,

via XGboost again, p̂ to the graph-informed anomalous probabilities p̃. The function `

in (2) is the negative logarithm of the Bernoulli probability mass function.

4 The Proposed Graph Informed Multiscale Detec-

tor (GIMAD)

Algorithm 1 summarizes the steps of the developed network anomaly detection technique.

The proposed algorithm requires as inputs the graph structure (network adjacency ma-

trix) of the data as well as a vertex specific set of covariates and binary indicators of

vertex anomalousness. The output of the algorithm is consisted of a vector with es-

timated anomaly probabilities for each vertex and a vector of cluster memberships for

the vertices. We note that the input adjacency matrix can be either symmetric (undi-

rected graph) or non-symmetric (directed graph) since in the latter case sophisticated

techniques for transforming a directed graph to a non-directed one have been proposed

in the recent literature and can be easily employed; see, for example, Malliaros and

Vazirgiannis (2013) for a detailed discussion.
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Algorithm 1 GIMAD

Input: N × N network adjacency matrix A; N -dimensional vertex specific binary

vector Y ; N×p matrix X with vertex specific covariates; tuning constant α > 0; positive

integer K.

1: if A symmetric then

2: Set Ã = A

3: else

4: Set Ã to be the symmetric matrix obtained after suitable transformation on A.

5: end if

6: Predict anomaly probabilities p̂ by first training XGboost1 on responses Y and

covariates X.

7: Calculate L(α, τ̂) defined by equation (1) in the main paper.

8: Compute the eigendecomposition L(α, τ̂) and form theN×K matrix U with columns

the eigenvectors that correspond to the K largest eigenvalues.

9: Normalize each row in U to have unit length and form the N ×K matrix W with

wik = uik
√
λk.

10: Estimate anomaly probabilities p̃ by using XGboost with responses Y and features

W .

11: Treat each normalized row of U as point in RK and run a k-means clustering algo-

rithm with K clusters; if the ith row of U falls in the kth cluster assign node i to

cluster k.

Output: N -dimensional vector p̃ with vertex specific anomaly probabilities; N -

dimensional vector C with vertex specific cluster memberships.

5 Results from the Spectral Decomposition

Figure 1 displays the first 200 eigenvalues of the matrix L(0.01, τ̂) computed by using

the Lanczos bidiagonalization algorithm (Baglama and Reichel, 2005). Figure 2 presents

the mean of each loading vector separately for the “low–risk” taxpayers, for the “high–

risk” taxpayers that we used to train GIMAD and for the “high–risk” taxpayers that

we aimed detect. It is clearly indicated by the Figure that for the “high–risk” taxpayers

exists one eigenvector for which the mean of its loadings is much higher than the means

of the loadings that correspond to the rest eigenvectors. By noting that in the case

of “low–risk” taxpayers the mean loadings for all the eigenvectors have similar values

we conclude that using, in the 9th step of Algorithm 1, the columns of matrix W as

1We utilize the r-package xgboost (Chen et al., 2019).
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features in a XGboost algorithm we obtain an accurate classification between “high-”

and “low–risk” taxpayers.
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λ k

Figure 1: The first K = 200 eigenvalues of the matrix L(0.01, τ̂) computed by using the

Lanczos bidiagonalization algorithm (Baglama and Reichel, 2005).
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Figure 2: Mean of the loadings that correspond to the first K = 200 eigenvalues. The

“high–risk” taxpayers are separated to those that we used to train our method and those

that we aimed to detect. The x-axis indicates the loading that corresponds to the kth

eigenvalue.
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